

Socially Acceptable Bipedal Navigation: A Signal-Temporal-Logic-Driven Approach for Safe Locomotion

Abdulaziz Shamsah and Ye Zhao Laboratory for Intelligent Decision and Autonomous Robots Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta

• How can a **bipedal** robot **navigate** an open, **human-crowded** environment while ensuring:

- How can a **bipedal** robot **navigate** an open, **human-crowded** environment while ensuring:
 - Locomotion safety
 - Maintain balance

- How can a **bipedal** robot **navigate** an open, **human-crowded** environment while ensuring:
 - Locomotion safety
 - Maintain balance
 - Navigation safety
 - Avoid collisions

- How can a bipedal robot navigate an open, human-crowded environment while ensuring:
 - Locomotion safety
 - Maintain balance
 - Navigation safety
 - Avoid collisions
 - Task completion
 - Reach-avoid, surveillance

- How can a bipedal robot navigate an open, human-crowded environment while ensuring:
 - Locomotion safety
 - Maintain balance
 - Navigation safety
 - Avoid collisions
 - Task completion
 - Reach-avoid, surveillance
 - Maintain social norms
 - Imitate human path

- How can a bipedal robot navigate an open, human-crowded environment while ensuring:
 - Locomotion safety
 - Maintain balance
 - Navigation safety
 - Avoid collisions
 - Task completion
 - Reach-avoid, surveillance
 - Maintain social norms
 - Imitate human path

- High level: learning-based-social-path planner
 - Generates a socially acceptable path and promotes locomotion safety

- High level: learning-based-social-path planner
 - Generates a socially acceptable path and promotes locomotion safety
- Middle level: reduced-order model step planner [1, 2]
 - **Guarantees** task completion, and navigation and locomotion safety for the reduced order model

- High level: learning-based-social-path planner
 - Generates a socially acceptable path and promotes locomotion safety
- Middle level: reduced-order model step planner [1, 2]
 - **Guarantees** task completion, and navigation and locomotion safety for the reduced order model
- Low level: passivity-based realtime controller [2, 3]
 - **Tracks** the reduced-order-model trajectory from the middle level

Mangalam, Karttikeya, et al. ECCV 2020

Social Path Planner

 $\hat{\mathcal{T}}^{\mathrm{ego}}_{[t,t_f]}$

Random

Ego-agent's future path

(+) Concatenation

would take in a similar setting

Mangalam, Karttikeya, et al. ECCV 2020

 (Σ) Summation

🔶 Final goal

Pedestrian

MLP

Gr Georgia Tech

Social Path Planner Results

- Motivation: regulate the CVAE output to promote locomotion safety
- Methodology: use the quantitative semantics of Signal-Temporal Logic (STL) as part of the loss function [4]

- Motivation: regulate the CVAE output to promote locomotion safety
- Methodology: use the quantitative semantics of Signal-Temporal Logic (STL) as part of the loss function [4]

 $\rho(s_t,\phi)~$ quantifies the degree of satisfaction or violation of the specification $\phi~$ given a specific signal s_t

 $\rho(s_t, \phi) = \begin{cases} \geq 0 & s_t \text{ satisfies } \phi \\ < 0 & s_t \text{ violates } \phi \end{cases}$

[4] Leung, Karen, et al. IJRR 2023

- Locomotion velocity specifications $\phi_{\text{sag}} = \Box_{[t+1,t_f]}(s_{[t+1,t_f]}^{v_{\text{sag}}} \leq v_{\max} \wedge s_{[t+1,t_f]}^{v_{\text{sag}}} \geq v_{\min})$ $\phi_{\text{lat}} = \Box_{[t+1,t_f]}(s_{[t+1,t_f]}^{v_{\text{lat}}} \leq v_{\text{lat}} \wedge s_{[t+1,t_f]}^{v_{\text{lat}}} \geq -v_{\text{lat}})$ $\phi_{\text{vel}} = \phi_{\text{sag}} \wedge \phi_{\text{lat}}$
- Heading change specifications

 $\phi_{\Delta\theta} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{\Delta\theta} < \Delta\theta_{\max} \wedge s_{[t+1,t_f]}^{\Delta\theta} > -\Delta\theta_{\max})$

- Locomotion velocity specifications $\phi_{\text{sag}} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{v_{\text{sag}}} \le v_{\max} \land s_{[t+1,t_f]}^{v_{\text{sag}}} \ge v_{\min})$ $\phi_{\text{lat}} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{v_{\text{lat}}} \le v_{\text{lat}} \land s_{[t+1,t_f]}^{v_{\text{lat}}} \ge -v_{\text{lat}})$ $\phi_{\text{vel}} = \phi_{\text{sag}} \land \phi_{\text{lat}}$
- Heading change specifications

$$\phi_{\Delta\theta} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{\Delta\theta} < \Delta\theta_{\max} \land s_{[t+1,t_f]}^{\Delta\theta} > -\Delta\theta_{\max})$$

$$\mathcal{L}_{\phi_{\Delta\theta}} = \underbrace{\operatorname{ReLU}(-\rho(s^{\Delta\theta}, \phi_{\Delta\theta}))}_{\mathsf{C}}$$

heading change violation

 $\mathcal{L}_{\phi_{\text{vel}}} = \operatorname{ReLU}(-\rho((s^{v_{\text{sag}}}, s^{v_{\text{lat}}}), \phi_{\text{vel}}))$

velocity violation

 $\mathcal{L}_{\phi_{\text{vel}}} = \text{ReLU}(-\rho((s^{v_{\text{sag}}}, s^{v_{\text{lat}}}), \phi_{\text{vel}}))$

velocity violation

- Locomotion velocity specifications $\phi_{\text{sag}} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{v_{\text{sag}}} \leq v_{\max} \wedge s_{[t+1,t_f]}^{v_{\text{sag}}} \geq v_{\min})$ $\phi_{\text{lat}} = \Box_{[t+1,t_f]} (s_{[t+1,t_f]}^{v_{\text{lat}}} \leq v_{\text{lat}} \wedge s_{[t+1,t_f]}^{v_{\text{lat}}} \geq -v_{\text{lat}})$ $\phi_{\text{vel}} = \phi_{\text{sag}} \wedge \phi_{\text{lat}}$
- Heading change specifications

$$\phi_{\Delta\theta} = \Box_{[t+1,t_f]}(s_{[t+1,t_f]}^{\Delta\theta} < \Delta\theta_{\max} \land s_{[t+1,t_f]}^{\Delta\theta} > -\Delta\theta_{\max})$$

$$\mathcal{L}_{\phi_{\Delta\theta}} = \underbrace{\operatorname{ReLU}(-\rho(s^{\Delta\theta}, \phi_{\Delta\theta}))}_{\mathsf{V}}$$

heading change violation

$$\mathcal{L}_{\mathrm{STL}} = lpha_1 \mathcal{L}_{\phi_{\Delta heta}} + lpha_2 \mathcal{L}_{\phi_{\mathrm{vel}}}$$

Social Path Planner with STL results

Bipedal Social Path Planner Results

Bipedal Social Path Planner Results

Georgia Tech

Bipedal Social Path Planner Results

Georgia Tech

Preliminary Results

Ongoing work

 Predicting social reachable corridors parameterized as zonotopes

$$\mathcal{Z}(c,G) = \{c + G\beta \mid \|\beta\|_{\infty} \leq 1\}$$
$$\hat{\mathcal{Z}}_{[t,t_{f-1}]}^{\text{ego}} = [c_t, G_t, \dots, c_{t_{f-1}}, G_{t_{f-1}}]$$
$$\mathcal{L}_{\mathcal{Z}} = f(\mathcal{T}^{\text{ego}}, \hat{\mathcal{Z}}^{\text{ego}}) + \|G\|$$

• Evolved STL specification for locomotion stability [5]

 $\phi_{\text{loco}} = \Diamond_{[T^k, T^{k+1}]} (\phi_{\text{keyframe}} \land \phi_{\text{riem}}) \land (\Box \phi_{\text{foot}})$

[4] Gu, Zhaoyuan, et al. submitted 2023

Georgia Institute for Robotics Tech and Intelligent Machines

Acknowledgments

- Anqi Wu, Georgia Institiute of Technology
- Shreyas Kousik, Georgia Institute of Technology

Funding:

- CMMI-2144309
- CMMI-2328254
- ONR-AWD#004473

Authors

Abdulaziz Shamsah

Ye Zhao

